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Abstract

This research develops a dynamic model of high school course choice with learning to examine
how students make decisions based on GPA and class rank feedback, which provide signals about
unobserved individual and cohort abilities. Using detailed administrative data from a school
district, the model is estimated using a sequential EM algorithm to account for unobserved
heterogeneity in utility and state transitions. The results reveal that students face a trade-off:
while Advanced Placement (AP) math courses require higher effort, they offer significant boosts
to GPA and class rank. Counterfactual analysis and quasi-experimental evidence show that when
rank information is withheld, students in the upper tail tend to overestimate their rank, leading
to increased AP math enrollment, contrary to the intended goal of reducing course burden
through rank non-disclosure. These findings have important implications for policymakers, as
class rank plays a crucial role in university admissions and many schools are considering non-
disclosure policies. The evidence that rank information can significantly influence high school
course selection is particularly important, as these decisions have long-term consequences for
students’ educational and labor market outcomes.

Keywords:
JEL Codes:

∗ritika.sethi@rice.edu, Department of Economics, Rice University, Houston, TX 77005.

http://ritikasethi.com/assets/rs_jmp.pdf


1 Introduction

Educational choices made during high school significantly impact students’ academic trajectories

and labor market outcomes. Advanced mathematics courses, in particular, are crucial in shaping

students’ college enrollment decisions, major selection, and success in STEM-related fields. A key

factor in these decisions is the student’s academic standing; academic rank relative to peers serves

as a critical signal for many, influencing their self-perception and subsequent choices.

In states such as Florida, California, and Texas, where university admissions are based on class

rank, the disclosure of rank information becomes even more critical. Class rank can either motivate

or discourage students from pursuing challenging coursework, depending on their sensitivity to their

relative standing. In response to these dynamics, several school districts have recently modified their

rank disclosure policies to alleviate the competitive pressures students face. This paper investigates

the impact of these policy changes on students’ course choices, with a particular focus on enrollment

in advanced placement (AP) mathematics courses.

While higher academic rank is generally associated with improved outcomes, such as increased

college enrollment and academic achievement (Murphy and Weinhardt, 2020; Bertoni and Nisticò,

2023; Denning, Murphy, and Weinhardt, 2023),1, the mechanism through which rank influences stu-

dent behavior is still debated. For instance, Murphy and Weinhardt (2020) show that ordinal rank

during primary school has long-term impacts on secondary school performance, even independent

of a student’s underlying ability, with particularly strong effects on boys’ subject choices, especially

in mathematics. Bertoni and Nisticò (2023) highlight the complex trade-offs between peer ability

and self-perception, showing that exposure to high-ability peers can lower a student’s ordinal rank,

thus reducing academic self-concept and influencing performance outcomes. Similarly, Denning,

Murphy, and Weinhardt (2023) find that students with a higher academic rank in early grades are

more likely to take AP courses, graduate from high school, attend college, and earn higher wages

later in life.

While these studies demonstrate the significance of rank in shaping educational and life out-

comes, there is considerable debate over whether rank information should be disclosed to students.

Some research suggests that providing rank feedback improves performance, particularly for high-

achieving students. For example, Azmat and Iriberri (2010) find that when students were given

relative performance feedback in a high school setting, their grades improved significantly, with a

5% increase across the board. Goulas and Megalokonomou (2021) show that disclosing performance

feedback enhances university enrollment and expected earnings for high-achieving students but dis-

courages lower-performing students. Additionally, Brade, Himmler, and Jäckle (2022) demonstrate

that feedback on being above average significantly boosts performance, indicating that positive

feedback can correct students’ underestimation of their relative abilities.

The central question this paper addresses is how changes in rank disclosure policies affect stu-

dents’ likelihood of enrolling in AP math courses. Specifically, we investigate whether withholding

1Delaney and Devereux (2022) provides an excellent review of this literature.
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rank information encourages students to take on more rigorous courses by reducing competitive

pressure, or whether it discourages students who might otherwise be motivated by their high rank.

This research focuses on mathematics courses due to their critical role in shaping students’ aca-

demic paths. Courses like AP Calculus often serve as prerequisites for college admissions and

STEM-related fields, making them especially impactful on college attendance, major choice, and

earnings (Rose and Betts, 2004; Aughinbaugh, 2012; Altonji, Blom, and Meghir, 2012; Tchuente,

2016; Todd and Wang, 2021).

To analyze these effects, we develop a dynamic structural model of high school course choice

under uncertainty, building on the framework of Arcidiacono, Aucejo, Maurel, and Ransom (2025).

The model allows students to update their beliefs about their individual ability based on the GPA

feedback as well as update their beliefs about the average ability of their cohort based on class

rank feedback. This setup naturally lends itself to exploring how withholding rank information

influences course selection. The model is estimated using detailed administrative data from a large

urban school district in Texas, covering student demographics, course selections, and grades from

2006 to 2016, when full rank disclosure was the norm.

Each year, a student can choose between leaving school, not taking a rank-eligible math course,

enrolling in a regular math course (e.g., Algebra I), opting for a weighted math course (e.g., Pre-AP

Algebra I), or pursuing an accelerated math track (e.g., Algebra I and Geometry). At the start of

each academic year, the student is characterized by three key state variables: the amount of math

they have completed, their interim GPA, and their interim rank. These state variables determine

the student’s available choices and progression in math courses, which evolves deterministically

based on their decisions. We model a student’s GPA using a capital accumulation function, where

their GPA is treated as an asset that grows over time as they complete courses and earn grades. A

student’s class rank, on the other hand, is modeled using a cumulative distribution function (CDF)

of the GPA of all students in their cohort. The student’s GPA is influenced by their unobserved

individual ability, and their rank depends on the cohort’s average unobserved ability, both of which

are unknown at the outset.

Students are forward-looking, maximizing the discounted expected sum of their payoffs, with

terminal utility based on their final high school rank. To estimate this model, we use the con-

ditional choice probability (CCP) method (Hotz and Miller, 1993), which simplifies the dynamic

optimization problem by expressing continuation values in terms of future choice probabilities. The

estimation is further streamlined since leaving school is a terminal action. Unobserved heterogene-

ity in student preferences and GPA production is incorporated through a sequential EM algorithm.

Following James (2011) and Arcidiacono and Miller (2011, 2019), we handle latent abilities by

integrating them out and treating them as known during the maximization step, allowing for a

computationally feasible approach to account for unobserved heterogeneity.

The model reveals several key insights. We find that students generally exhibit high disutility

from enrolling in AP math. For example, students who have not completed any math yet tend to

prefer Algebra I over Pre-AP Algebra I. Additionally, we find that the utility of taking AP math
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increases with rank and accelerates with rank squared, suggesting that higher-ranked students

gain more utility from enrolling in AP math courses, with the effect particularly strong for top

performers. We also find that AP math courses tend to boost GPA. Regarding ability sorting,

students who enroll in AP math consistently receive positive signals in terms of both GPA and

rank.

We then simulate our model under a counterfactual scenario where students no longer have

information on their interim class rank at the beginning of a grade level. The goal of the simulation

is to understand how information affects course choices. We find that adding informational frictions

would increase the AP math enrollment rate by 2, 3 percent 8 in tenth, eleventh and twelfth grades,

respectively. Without rank disclosure, students rely on GPA alone to form perceptions of their rank,

leading to overestimation of their relative standing. This overestimation drives higher AP math

enrollment among high-performing students.

To complement our model-based findings, we use quasi-experimental evidence from a school

district that recently stopped rank disclosure. A difference-in-differences analysis confirms that

students in the upper tail are more likely to enroll in AP math when rank information is withheld,

with effects that grow over time. The alignment between our quasi-experimental findings and model

predictions further validates our results.

The policy implications of this research are significant, particularly as more schools adopt rank

non-disclosure policies. Understanding how these policies affect student behavior is crucial for

developing interventions that promote equitable educational outcomes. Prior research by Brade,

Himmler, and Jäckle (2022) show that students improve their performance after learning they are

above average, demonstrating that students respond positively to favorable performance informa-

tion. Our findings reveal a nuanced phenomenon: when actual ranks are not disclosed, above-

average students tend to overestimate their standing and increase their AP course enrollment,

while below-average students underestimate their position. This suggests that withholding rank

information may inadvertently widen achievement gaps. Therefore, policymakers must carefully

consider these distributional consequences when implementing rank disclosure policies.

This paper contributes to several strands of literature. First, it builds on the body of work in dy-

namic discrete choice models of education (Keane and Wolpin, 1997; Arcidiacono, 2004; Arcidiacono

et al., 2025), modeling high school course choices while accounting for unobserved heterogeneity

and learning about individual and cohort abilities. Second, it contributes to the literature on feed-

back in education (Azmat and Iriberri, 2010; Tran and Zeckhauser, 2012; Elsner and Isphording,

2017; Goulas and Megalokonomou, 2021; Floyd et al., 2024), providing empirical evidence on how

rank disclosure affects student outcomes. Finally, it adds to the broader literature on feedback

in dynamic contests (Genakos and Pagliero, 2012; Jiang et al., 2018; Lemus and Marshall, 2021),

offering insights into how information frictions shape academic decision-making.

The remainder of the paper proceeds as follows. Section 2 details the related literature. Sec-

tion 5 outlines our dynamic model of high school course choice, highlighting the role of imperfect

information and belief updating. Section 4 describes our data sources. Sections 6 and 7 detail our
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identification strategy and estimation procedure. Section 8 reports the structural parameter esti-

mates and model fit. Section 9 conducts counterfactual simulations of rank non-disclosure policies

and presents our quasi-experimental analysis and results. Section 10 discusses the implications of

our findings and concludes.

2 Related Literature

This section reviews the relevant literature on dynamic discrete choice models in education, learning

processes, methodological approaches, and the role of feedback in both educational and contest

settings.

Dynamic Discrete Choice in Education: Dynamic discrete choice models have been exten-

sively applied to educational decision-making processes. These models capture the sequential nature

of educational choices and account for the uncertainty and learning that occurs over time.

A seminal contribution to this field was made by Keane and Wolpin (1997), who developed and

estimated a dynamic structural model of schooling, work, and occupational choice decisions using

data from the National Longitudinal Surveys of Labor Market Experience (NLSY). This work laid

a strong foundation for subsequent research in the area, demonstrating the potential of dynamic

structural models to provide insights into complex life-cycle decisions related to human capital

accumulation.

Building on this foundation, Eckstein andWolpin (1999) examined youth behavior in the context

of education and employment choices. Their study focused on the factors influencing high school

dropout decisions, incorporating heterogeneity in skills and preferences.

Arcidiacono (2004) made significant contributions by introducing ability sorting into the dy-

namic framework of college major choices. This work highlighted the importance of considering

student heterogeneity and learning about one’s abilities in educational decision-making.

De Groote (2019) develop a dynamic model in which students choose the academic level of their

program and their effort level. They find that encouraging underperforming students to switch to

less academic programs reduces grade retention and dropout.

More recently, Arcidiacono, Aucejo, Maurel, and Ransom (2025) extended this line of research

by estimating a dynamic structural model where individuals face uncertainty about their academic

ability and productivity, which respectively determine their schooling utility and wages. Their

framework accounts for heterogeneity in college types and majors, as well as occupational search

frictions and work hours. They find that removing informational frictions would increase the college

graduation rate.

Learning: The process of learning plays a crucial role in both educational and economic decision-

making. Several key studies have contributed to our understanding of learning dynamics in various

contexts.
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Miller (1984) applied learning models to job matching, demonstrating how individuals update

their beliefs about job suitability over time. This work has important parallels in educational

settings, where students learn about their abilities and preferences for different subjects or majors.

In the context of consumer choice, Erdem and Keane (1996) developed a model of learning under

uncertainty. While focused on brand choice, their framework provides valuable insights into how

individuals make decisions with imperfect information, a concept highly relevant to educational

choices.

Arcidiacono (2004) incorporated learning about abilities into models of educational choice,

showing how students update their beliefs about their aptitude for different fields of study based

on their academic performance.

More recently, Arcidiacono, Aucejo, Maurel, and Ransom (2025) extended this line of research

by estimating a dynamic structural model in which individuals learn about their academic ability

and productivity, which respectively determine their schooling utility and wages.

Methodology: The estimation of dynamic discrete choice models often involves complex com-

putational challenges. Several methodological approaches have been developed to address these

issues. Hotz and Miller (1993) introduced the conditional choice probability (CCP) approach,

which significantly reduced the computational burden of estimating dynamic discrete choice mod-

els. This method has been widely adopted in the education literature. Keane and Wolpin (1997)

applied these techniques to career decisions while incorporating a finite mixture model to capture

unobserved heterogeneity. Arcidiacono and Miller (2011) further advanced the methodology by de-

veloping techniques for estimating dynamic models with unobserved heterogeneity. Their approach

combines the CCP method with the expectation-maximization (EM) algorithm, allowing for more

flexible modeling of individual differences.

Role of Feedback in Education: Feedback plays a crucial role in shaping educational outcomes

and student behavior. Several studies have examined the effects of different types of feedback in

educational settings. Azmat and Iriberri (2010) investigated the impact of relative performance

feedback on high school students. Their study found that providing students with information

about their relative standing improved performance, particularly for those at the extremes of the

achievement distribution. Tran and Zeckhauser (2012) examined the effects of rank feedback in

a field experiment, finding that knowledge of one’s rank can serve as an inherent incentive for

improved performance. Floyd, Tomar, and Lee (2024) explored the consequences of withholding

grades, providing insights into how the absence of explicit feedback affects student behavior and

subsequent employment outcomes. Elsner and Isphording (2017) studied the “big fish in a small

pond” effect, showing how a student’s relative rank within their school influences human capital

investment decisions and long-term outcomes. Goulas and Megalokonomou (2021) investigated

the short- and longer-term effects of providing students with feedback about their true academic

standing. Their findings suggest that accurate self-knowledge can lead to more efficient educational

investments.

5



Role of Feedback in Contests: The literature on feedback in contests provides valuable in-

sights that can be applied to competitive educational settings. Genakos and Pagliero (2012) studied

the effects of interim rank feedback in dynamic tournaments. Their findings suggest that relative

performance information can influence risk-taking behavior and effort allocation in competitive

environments. Lemus and Marshall (2021) examined feedback in dynamic innovation contests,

providing insights into how information revelation affects participant strategies and contest out-

comes. Jiang, Huang, and Beil (2018) analyzed the role of feedback in crowd-sourcing contests,

demonstrating how different feedback mechanisms can influence participation and performance in

competitive settings.

In conclusion, this paper contributes to and extends several key strands of the above discussed

strands of literature. Our work builds upon the foundational models of educational decision-making

while focusing on the course choices of high school students. Additionally, we extend these models by

incorporating a dual learning process where students update their beliefs about both individual and

cohort ability based on GPA and rank signals, respectively, bridging the gap between the literature

on learning with studies on the impact of relative performance feedback. Methodologically, our

use of unobserved heterogeneity in both flow utility and the transition process, estimated via a

sequential EM algorithm, builds on the computational advancements of Arcidiacono and Miller

(2011). Finally, our counterfactual analysis examining the impact of removing rank signals on

course choices contributes to the ongoing policy debate on the role of comparative feedback in

educational settings. By integrating these various elements, our paper provides a comprehensive

framework for understanding the complex dynamics of high school course selection, offering insights

that can inform both future research and policy discussions in education.

3 Background

Percent Plans: After the end of race-conscious affirmative action policies, states such as Califor-

nia, Texas, and Florida implemented percent plans for college admissions, prioritizing high school

grades and class rank. Wisconsin is the latest state to adopt this approach. Beginning with the

class of 2026, Wisconsin students graduating in the top 5 percent of their high school class will be

guaranteed admission to the University of Wisconsin-Madison, while those in the top 10 percent

will be assured admission to other institutions within the University of Wisconsin system.

The Texas Ten Percent Plan, introduced in 1998, guarantees automatic admission to Texas

public universities for students graduating in the top 10% of their high school class. Under this

policy, eligible students can choose from any of the 35 public universities in Texas, including

prestigious institutions like the University of Texas at Austin (UT Austin) and Texas AMUniversity.

High school class rank serves as the primary criterion for admission and is calculated by the district

or school based on the most recent academic record, which could include the student’s rank at the

end of their 11th grade, mid-12th grade, or upon graduation.

In contrast, California’s program guarantees admission to one of the eight undergraduate cam-
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puses in the University of California (UC) system for students graduating in the top 4% of their high

school class. However, it does not ensure admission to the student’s campus of choice. Eligibility

is based on GPA in UC-required courses taken during 10th and 11th grades. Since highly selective

campuses like UC Berkeley use additional criteria such as academic preparation, extra-curriculars,

and personal qualities, students must still compete for spots at these campuses.

Florida’s percent plan guarantees admission to the state university system for students in the top

20% of their class, based on district-determined class rank. Eligibility hinges on either a B average

in required academic units or a combination of GPA and test scores. However, like California,

Florida’s plan only guarantees entry into the system, not into specific universities, which may have

additional selection criteria.

Key differences exist among the percent plans in these states. Unlike Texas, which guarantees

admission to flagship institutions, California and Florida merely promise access to the broader

state university system. The methods for determining eligibility also differ, with Texas and Florida

relying on GPA calculations at the district level, while California identifies juniors from specific

coursework, and the UC system finalizes eligibility. Texas uniquely emphasizes class rank as the

sole determinant for the Ten Percent Plan, making class rank the central criterion for guaranteed

admission. This singular focus sets Texas apart from other states, ensuring that placement within

one’s high school cohort dictates eligibility for the state’s premier universities. Additionally, Texas’s

flexible course and credit requirements make the plan more accessible to a wider range of students

compared to California and Florida, further distinguishing its approach to college admissions.

Texas Top Ten Percent Plan: The Texas Top Ten Percent Plan, also known as Texas House

Bill 588, was implemented in 1998 to grant automatic admission to any public university in the

state for students who rank within the top ten percent of their high school graduating class. The

primary goal of this policy was to increase the representation of students from under-performing

high schools in selective universities without explicitly relying on race-based affirmative action.

Given the economic and racial segregation in Texas public schools, policymakers expected that

the plan would enhance diversity by using school-specific class rank as the primary criterion for

eligibility.

While House Bill 588 formalized this automatic admission policy, it was not a radical depar-

ture from previous practices at the University of Texas (UT). Until 1993, UT allowed automatic

admission for students in the top 10 percent of their class. In 1994, the university adjusted its

admission criteria to include a combination of class rank and SAT scores, making the process more

restrictive. House Bill 588, signed into law by Governor George W. Bush and passed by the 75th

Texas Legislature in 1997, reverted to the previous approach by basing eligibility solely on class

rank and eliminating the standardized test score requirement for automatic admission. This policy

sought to broaden access to highly selective public institutions by enabling students to compete

with peers within their own schools, thereby leveling the playing field for students from different

educational backgrounds.
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Research on the Texas Top Ten Percent Plan has shown varied impacts on college enrollment

and long-term outcomes. Using regression discontinuity, Niu and Tienda (2010) finds that the

policy increases flagship university enrollment for Hispanic students and those from schools with a

high proportion of minority and economically disadvantaged students. Black et al. (2020) further

demonstrate that the policy benefits highly ranked students from non-traditional feeder schools,

boosting their college enrollment, graduation, and earnings, while students from traditional feeder

schools, who lose access to flagship universities, do not experience declines in overall enrollment or

long-term earnings. Similarly, Daugherty et al. (2014) show that guaranteed admission significantly

increases flagship enrollment and persistence, especially among students in schools with high college-

going rates, but has little effect on students from the most disadvantaged schools and results in a

displacement from private universities rather than an increase in overall college enrollment.

Some studies suggest that the heterogeneous effects of the Top Ten Percent Plan can be at-

tributed to strategic school choices aimed at maximizing class rank. Cullen et al. (2013) analyze

students’ transitions between 8th and 10th grades three years before and after the policy change

and find that among students with both the motive and opportunity for strategic high school

choice, at least 5% enroll in different high schools to enhance their chances of graduating in the

top 10%. These students often opt for their neighborhood high schools instead of transferring to

more competitive institutions, which, regardless of their own race, can displace minority students

from the top 10% pool. Additionally, Cortes et al. (2014) provide evidence that families reacted

strategically to this policy by relocating to neighborhoods with lower-performing schools, thereby

increasing property values in those areas. This effect is most pronounced in schools that were very

low-performing before the policy change. They also find that the strategic reactions were influenced

by the availability of local schooling options, with the effects of the Top 10% Plan being weaker in

areas with fewer school choices.

Concerns have been raised regarding students manipulating the system through strategic course

selection to boost their class rank (The Texas Senate, 2001). Initially, the Texas Top Ten Percent

Plan did not specify any required academic curriculum for eligibility, which led to worries that

students were opting out of rigorous courses. In response, the Texas legislature passed an amend-

ment in 2001 that increased curriculum requirements for eligibility (Office of House Bill Analysis,

2001). The amendment, effective for the graduating class of 2008 and beyond, introduced three

curriculum options: the minimum graduation plan (which excluded college preparatory courses),

the state-recommended graduation plan (which included college prep courses), and the advanced

graduation plan. Under the new rules, students must complete either the recommended or advanced

graduation plans to qualify for automatic admission under the Top Ten Percent Plan.

Additionally, school districts have the authority to determine how class ranks are calculated and

disclosed, and in recent years, several districts have revised their rank calculation policies (Webb,

2019b; Dellinger, 2022; Potter, 2018; Donaldson, 2020; Rozen, 2022; Webb, 2019a). These changes

often involve adjustments to the eligible courses and the weights assigned to them. Districts also

have discretion over how rank information is shared with students. While state law mandates
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that rank information be disclosed to students within the top ten percent, some districts have

proposed alternative methods of disclosure, such as providing rank information in quartiles or

withholding specific rank details altogether. Table 1 summarizes some recent policy changes. One

motivation behind these policy changes is the concern that an overemphasis on class rank encourages

unhealthy competition among students, leading them to take courses primarily to boost their rank

rather than selecting classes that align with their college and career goals. Similar concerns have

prompted schools and parents in other states to consider adopting comparable rank disclosure

policies (Balingit, 2015; Hui, 2022).

Table 1. Changes in Local Policies

District Policy Effective Change

Dallas Rank calculation Class of 2021 Rank will now be based on 15 core courses in English
Language Arts, Math, Science, and Social Studies. It
was earlier based on any 12 courses including electives.

Frisco Rank disclosure Class of 2019 For students outside the top ten percent, rank will not
be reported in their transcript. Students will still know
their GPA. The lowest GPA in the top 10 percent, first
quartile, second quartile and third quartile will be pub-
lished in the Student Portal.

Clear Creek Rank calculation Class of 2027 Rank will be based on only core (non-elective) courses
in English Language Arts, Math, Science, Social Studies,
and World Languages and Culture.

Katy Rank disclosure Class of 2021 For students outside the top ten percent, only quartile
rank will be reported in their transcript.

3.1 Math Course-taking in Texas

According to the current high school graduation requirements in Texas, students must complete

Algebra I and Geometry. Within these courses, students have the option to choose between regular

and weighted versions, such as Pre-AP Algebra I and Pre-AP Geometry. The recommended path

is to take Algebra I in the ninth grade and Geometry in the tenth grade. However, students who

aspire to be eligible for consideration in the Top Ten Percent Plan need to go a step further and

take Algebra II, as well as an advanced math course like Calculus. These advanced courses also

offer weighted versions, such as Pre-AP Algebra II and AP Calculus.

Students have additional decisions to make regarding their math course selection. They can opt

for the accelerated track, where they take Algebra I in middle school, Geometry in ninth grade,

Algebra II in tenth grade, and advanced math courses in the final two years of high school. Another

option to expedite their progress is to double up on math courses in the same year, such as taking

both Algebra I and Geometry in the ninth grade. Figure 1 provides an overview of the various

course sequences available to a student. It is important to note that math courses follow a sequential

structure, with Algebra I serving as a prerequisite for Geometry, which is a prerequisite for Algebra

II, and so on, culminating in Calculus.
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Figure 1. Course map: horizontal and vertical tracking
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Graduation requirement
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[] Alg I Geom Alg II advTop 10 eligibility
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Alg I Geom Alg II adv advAccelerated track example

[] Alg I + Geom Alg II adv advAccelerated track example

4 Data

We use administrative data obtained from a large urban school district in Texas. The dataset in-

cludes academic records for 106,761 high school students and covers their demographic information

(race, ethnicity, gender), course selections, course grades, GPA, and class rank. The data spans

32 schools and 304 graduating classes between 2006 and 2016. Additionally, we observe the high

school-level courses credited to students during their middle school years (6th, 7th, and 8th grades)

as well as during high school (9th through 12th grades).

4.1 Descriptive Statistics

Table 2 provides a summary of the academic and demographic characteristics of the 106,761 students

in our dataset. Panel A presents the demographic breakdown of the student sample. On average,

25% of the students identify as Black, while 60% are Hispanic, reflecting the district’s diverse

student population. Female students make up 50% of the sample.

Panel B summarizes the math course-taking patterns. On average, students completed 3.28

math courses, with 0.71 of those being weighted (e.g., advanced or honors courses). Nearly all

students completed Algebra I (100%) and Geometry (93%), while 80% completed Algebra II by

the end of high school. However, more advanced courses see a sharp drop in completion rates, with

48% of students taking Pre-Calculus and only 14% completing Calculus.

Panel C reports the dropout rates by grade level. The dropout rate is zero by Grade 9 but

increases steadily as students progress through high school. By Grade 10, 9% of students have
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Table 2. Past academic and background characteristics by course choice

(1) (2) (3)

[Min,Max] Mean S.D.

Panel A: Demographics

Black [0,1] 0.25 (0.44)
Hispanic [0,1] 0.60 (0.49)
Female [0,1] 0.50 (0.50)

Panel B: Math Coursetaking

Total Math courses [0,5] 3.28 (0.88)
Total Weighted Math courses [0,4] 0.71 (1.16)
Ever Completed Algebra I [0,1] 1.00 (0.06)
Ever Completed Geometry [0,1] 0.93 (0.25)
Ever Completed Algebra II [0,1] 0.80 (0.40)
Ever Completed Pre-Calculus [0,1] 0.48 (0.50)
Ever Completed Calculus [0,1] 0.14 (0.34)

Panel C: Dropout

Dropout by Grade 9 [0,0] 0.00 (0.00)
Dropout by Grade 10 [0,1] 0.09 (0.28)
Dropout by Grade 11 [0,1] 0.18 (0.38)
Dropout by Grade 12 [0,1] 0.26 (0.44)

Panel D: GPA

GPA after Grade 9 [70,100] 84.93 (4.73)
GPA after Grade 10 [70,100] 84.95 (4.15)
GPA after Grade 11 [70,100] 85.22 (3.81)
GPA after Grade 12 [70,99] 85.70 (3.58)

Obs 106,761

Note: This table reports summary statistics for the data that is used to estimate our structural model. This is student-level
data.
Data source: Administrative data from a large urban district in Texas
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dropped out, with the rate rising to 18% by Grade 11 and 26% by Grade 12. This indicates a

significant attrition rate, particularly in the later years of high school.

Panel D provides GPA statistics over time. Students’ average GPA shows a steady increase

from 84.93 after Grade 9 to 85.70 by the end of Grade 12. Meanwhile, the standard deviation of

GPA decreases from 4.73 in Grade 9 to 3.58 in Grade 12, suggesting reduced variation in academic

performance as students approach graduation. Figure 2 further illustrates the distribution of GPA

by grade level, showing that GPAs are approximately normally distributed across each grade.

Figure 2. GPA Distribution by Grade Level

Note: The figure shows the distribution of GPAs for students after grades 9, 10, 11, and 12. GPA data for students after
completing grades 9-12. Mean GPA and standard deviation are provided for each grade level. The distributions appear to be
roughly normal, with slight changes in shape and central tendency across grade levels.
Data source: Administrative data from a large urban district in Texas

Course-taking Patterns: Figure 3 visualizes the math course progression of students from

Grade 8 through Grade 12, highlighting various pathways that students take throughout their high

school years. The diagram categorizes students into different groups based on their course-taking

behavior: Regular (R), Weighted (W), Accelerated (A), None (no rank-eligible math courses), and

Leave (students who exit the school system). The flow lines between these categories represent

transitions between courses as students progress through high school, with the thickness of the

lines corresponding to the proportion of students making each transition.

In Grade 8, a majority of students (79%) do not take any rank-eligible math courses. Most

12



of these students transition into the regular math option (Algebra I) in Grade 9, while a small

proportion pursue the accelerated math option (Algebra I + Geometry) in Grade 9. On the other

hand, 20% of the students take Algebra I in Grade 8, and a majority of them subsequently enroll in

the weighted math option (Geometry Pre-AP) in Grade 9. This early acceleration in middle school

sets the foundation for these students to continue in more advanced math courses in high school.

In Grade 9, 72% of students take the regular math option, while 16% opt for weighted courses,

and 8% pursue accelerated math options. Students enrolled in regular courses in Grade 9 tend to

persist in the regular track in subsequent grades, although there is some movement into other tracks

over time. The proportion of students taking regular math courses decreases gradually as students

move to higher grades, while there is a notable increase in the proportion of students opting not

to take any rank-eligible math courses as they approach the end of high school. Similarly, students

who take the weighted option in Grade 9 are more likely to continue with the weighted course

progression in the following years, but there is some leakage into regular and other course options.

Figure 3. Student Progression and Academic Pathway Flows Across Grades 8-12

Note: This Sankey diagram illustrates the academic pathways of students from Grade 8 through Grade 12. The width of each
flow represents the proportion of students following that particular path. The main categories tracked appear are R (“Regular”
courses), W (“Weighted” courses), A (“Accelerated” courses), “None” (which might indicate students not enrolled in specific
rank-eligible courses), “Leave” (which indicates leaving school). The visualization demonstrates how students transition between
these academic categories as they progress through high school grades.
Data source: Administrative data from a large urban district in Texas
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Course-taking and Academic Standing Table 3 presents the summary statistics conditional

on the math course chosen, where we distinguish math course options into five categories: leaving

school, staying but not taking any (rank-eligible) math course, taking a regular (unweighted) math

course (e.g., Geometry after completing Algebra I), taking a weighted math course (e.g., Pre-

AP Geometry after Algebra I), or taking an accelerated course (e.g., taking both Geometry and

Algebra II after Algebra I). Panel A displays the beginning-of-year GPA, rank, and math progression

statistics. Students enrolled in weighted or accelerated math courses have, on average, higher GPAs

and ranks at the start of the year compared to those taking regular courses. For instance, the

average GPA for students taking weighted or accelerated courses is 86.92 and 86.17, respectively,

compared to 84.73 for those in regular courses. Similarly, the average rank percentile is 0.61 and

0.56 for students in weighted and accelerated courses, respectively, compared to 0.49 for those in

regular courses.

We also examine whether students are on the recommended math progression, which typically

involves completing Algebra I in ninth grade, Geometry in tenth grade, Algebra II in eleventh grade,

and an advanced course like Pre-Calculus in twelfth grade. Students who have accelerated their

math progression (e.g., by completing Algebra I in middle school) are more likely to take weighted

courses. On average, 71% of students enrolled in weighted courses have accelerated previously,

compared to only 6% of those in regular courses.

Panel B provides residualized GPA and rank statistics, controlling for past academic perfor-

mance and demographic characteristics. The negative coefficients indicate that students with lower

residualized GPA and rank are more likely to leave school or take fewer rank-eligible courses, while

those with higher residuals are more likely to enroll in weighted courses.

Panel C summarizes the end-of-year GPA and rank for each group, showing that weighted and

accelerated course-takers continue to outperform their peers by the end of the year, with average

GPAs of 86.49 and 85.50, respectively, compared to 84.81 for regular course-takers. Similarly, those

who enroll in the weighted or accelerated courses have a higher rank – 0.58 and 0.52, respectively

– at the end of the year compared to those who enroll in the regular math course – 0.49.

Overall, the table highlights that students who take weighted or accelerated courses have

stronger academic backgrounds and are more likely to have deviated from the standard math

progression. At the same time, these students go on to have a higher academic performance in

the future as well. The results suggest that early acceleration and strong academic performance

are correlated with more advanced course-taking in high school. These patterns may also reflect

learning – students upon learning about higher-than-expected GPA and rank may increase their

enrollment in rigorous coursework.
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Table 3. Past and Future academic characteristics by course choice

(1) (2) (3) (4) (5) (6)

Leave None Regular Weighted Accelerated Total

Panel A: Beginning-of-Year GPA, Rank, and Math Progression

GPA 82.81 84.61 84.73 86.92 86.17 85.03
(4.30) (4.09) (3.98) (4.10) (5.10) (4.28)

Rank 0.36 0.46 0.49 0.61 0.56 0.50
(0.29) (0.29) (0.28) (0.27) (0.30) (0.29)

Above the recommended level 0.17 0.18 0.06 0.71 0.21 0.20
(0.38) (0.38) (0.24) (0.45) (0.40) (0.40)

Panel B: Beginning-of-Year Residualized GPA and Rank

GPA −3.37∗∗∗ −2.16∗∗∗ −1.29∗∗∗ −0.15∗∗∗

(0.03) (0.02) (0.02) (0.04)
Rank −3.37∗∗∗ −2.16∗∗∗ −1.29∗∗∗ −0.15∗∗∗

(0.03) (0.02) (0.02) (0.04)

Panel A: End-of-Year GPA and Rank

GPA - 84.63 84.81 86.49 85.50 85.17
- (3.96) (4.04) (4.05) (4.89) (4.15)

Rank - 0.44 0.49 0.58 0.52 0.50
- (0.29) (0.28) (0.28) (0.30) (0.29)

Obs 37,683 145,652 230,602 75,380 25,384 514,701

Note: This table reports summary statistics for the data that is used to estimate our structural model. Standard deviations
are listed directly below the mean (in parentheses) for each entry. This is student-grade-level pooled data.
Data source: Administrative data from a large urban district in Texas

5 Model

5.1 Overview

Motivated by the descriptive patterns in the data, we now turn to our model of high school course

decisions. Individuals in each period from t = 1 to t = T make a decision regarding their mathe-

matics course-taking. A student’s options include whether to leave school, stay in school but not

take a (rank-eligible) mathematics course, take the regular mathematics course, take the weighted

mathematics course, or take the accelerated mathematics course.

Students have imperfect information about their mathematics ability, which we denote by Ai.

We assume that Ai is also unobserved to the econometrician and normally distributed, with mean

zero and variance σ2
g,a. Additionally, students have imperfect information about the average ability

of their cohort, which we denote by R−i. We assume that R−i is also unobserved to the econome-

trician and normally distributed, with mean zero and variance σ2
r,a. Beyond these individual and

relative abilities that are initially unknown to the students, we also allow for unobserved (to the

econometrician only) heterogeneity.

Students update their beliefs about Ai by receiving GPA signals that depend on their choices.

These signals reveal information regarding their ability. Similarly, students update their beliefs

about R−i by receiving rank signals. These signals reveal information regarding the average ability

of their cohort.

Students are assumed to be forward-looking and choose the sequence of actions yielding the

highest value of expected lifetime utility. Hence, when making their course decisions, individuals

15



consider the option value associated with the new information acquired on different choice paths.

We now detail the main elements of the model. We first discuss the flow payoff, grade and rank

production functions. We then describe how individuals update their beliefs about their individual

and relative abilities. Finally, we discuss the optimization problem the individuals face. Discussions

of model identification and estimation are deferred to Sections 6 and 7, respectively.

5.2 Timing:

The model is designed to capture the progression of high school students through different grade

levels, denoted by t = 1, . . . , T , where T = 4. Each grade level represents a specific point in time

during a student’s academic journey. The timing of the grade levels is as follows: t = 1 corresponds

to the first year of high school (aka ninth grade or freshman year), t = 2 corresponds to the second

year of high school (aka tenth grade or sophomore year), t = 3 corresponds to the third year of

high school (aka eleventh grade or junior year), and t = 4 corresponds to the fourth year of high

school (aka twelfth grade or senior year).

5.3 Choice Variable:

In each grade level t ∈ 1, . . . , T , student i makes a decision regarding their math course-taking,

denoted by ait ∈ 0, . . . , 4 corresponding to leave, no math course, recommended course, weighted

course, accelerated course. In other words, they can leave school, stay in school but not take a

(rank-eligible) mathematics course, take the regular mathematics course, take the weighted math-

ematics course, or take the accelerated mathematics course. Mathematics in high school is taken

in progression. We define the math pre-requisite level, represented by ℓit ∈ L, which indicates the

highest math course student i has taken before reaching grade level t, and therefore determines

their eligibility to take certain courses in the subsequent grade levels. The set L consists of six ele-

ments: 0, 1, 2, 3, 4, 5 corresponding to the pre-requisite levels of none, Algebra I, Geometry, Algebra

II, Pre-Calculus, Calculus, respectively.

For example, if ℓit = 0, it means student i has not taken any math course before reaching grade

level t, and they are eligible to take Algebra I in the current grade level (t), or in future grade levels.

If ℓit = 1, it indicates that the student has completed Algebra I and is now eligible to take Geometry.

Similarly, if ℓit = 2, the student has completed Geometry and can proceed to Algebra II, and so

on. Hence, based on their pre-requisite level ℓit, student i makes a math course decision ait ∈ Aℓ
where Aℓ represents the choice set available to a student if their pre-requisite level in grade t is ℓ,

i.e., ℓit = ℓ. The choice sets are summarized in Table 4. Alternatives 1 and 2 mean leave school and

stay in school but not take any (rank-eligible) math course, irrespective of the math pre-requisite

level. Someone who has not taken any high school mathematics course yet (ℓ = 1) can choose from:

Leave, No math course, Algebra I, Algebra I Pre-AP, and Geometry. Someone who has completed

Algebra I can choose from: Leave, No math course, Geometry, Geometry Pre-AP, and Algebra II.

Someone who has completed Geometry can choose from: Leave, No course, Algebra II, Algebra II

Pre-AP, and Pre-Calculus. Someone who has completed Algebra II can choose from: Leave, No
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course, Pre-Calculus, Pre-Calculus Pre-AP, and Calculus AP. Note that Calculus is only available

in the weighted (AP) version. Someone who has completed Pre-Calculus can choose from: Leave,

No course, and Calculus AP. Note that there is no math course more advanced than Calculus.

Table 4. State-specific Choice set

ℓ
Aℓ Regular Weighted Accelerated

None Algebra I Algebra I (Pre-AP) Geometry
Algebra I Geometry Geometry (Pre-AP) Algebra II
Geometry Algebra II Algebra II (Pre-AP) Pre-Calculus
Algebra II Pre-Calculus Pre-Calculus (Pre-AP) -
Pre-Calculus - Calculus (AP) -

Note: ℓ refers to the math pre-requisite level attained before making
the course choice and Aℓ refers to the set of alternatives available to
someone who is at pre-requisite level ℓ. Alternatives 1 and 2 mean leave
school and stay in school but not take any math course, irrespective of
the math pre-requisite level, so they are omitted from the table to save
space.

5.4 Flow Utility

The flow payoff for each math course decision is influenced by three primary factors. First, a

student’s incentives are shaped by their observed, time-varying ability as measured by their class

rank, denoted as rit ∈ [0, 1]. This rank is based on the student’s high school class percentile, where

a higher value indicates a better rank, reflecting the student’s relative performance compared to

peers in the cohorts (i.e., individuals who graduate from the same school in the same year).

Second, there is a time-varying, unobserved utility component specific to course a, denoted as

ϵit(a). This component captures individual-level idiosyncratic preferences for each course that vary

over time. For example, changes in personal interests or external circumstances could influence a

student’s inclination toward particular math courses at different stages.

Third, there is an unobserved, time-invariant utility component, βk(a), which depends on their

unobserved type k. This component captures persistent preferences for a given course option

based on the student’s type, which could reflect characteristics such as intrinsic ability, motivation,

or external constraints that do not change over time. This unobserved heterogeneity allows for

variation in students’ preferences that are not captured by observable characteristics and persist

across different grade levels.

In addition to these three factors, utility also depends on whether the student has completed

the recommended math course before entering that grade level, represented as ℓit > ℓ̄t. Here, ℓit

indicates the highest math course completed by student i before grade t and ℓ̄t is the recommended

level of math proficiency for grade t. If a student is above this recommended level, they may

derive additional utility from feeling more prepared or confident in tackling advanced coursework.

Finally, the student’s demographic information Xi can also influence their utility from different

course options.

The utility from leaving school, i.e., a = 0, is normalized to zero. In grade level t ∈ {1, . . . , T},
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the flow payoff for student i from choice a ∈ {1, 2, 3, 4} is given by:

ut(a, ℓit, rit, ϵit;β) = βa,0+βa,ℓ(ℓit > ℓ̄t)+βa,r,1rit+βa,r,2r
2
it+βa,xXi+

∑
k

βk,a(ki = k)+ϵit(a). (1)

Here, βa,0 represents the base utility level of choosing course a while βa,ℓ captures how this base

utility differs for those above the recommended math level. This specification allows the utility

to vary by whether the student has accelerated beyond the standard math progression. The rec-

ommended levels are: no math course required before entering Grade 9, Algebra I before Grade

10, Geometry before Grade 11, and Algebra II before Grade 12, i.e., ℓ̄t = t − 1. Additionally, the

terms βa,r,1 and βa,r,2 capture the linear and quadratic effects of class rank on utility. The inclu-

sion of both terms allows the relationship between class rank and utility to be nonlinear, reflecting

potential diminishing or increasing returns to rank as students move up in the distribution.

5.5 Terminal Utility

At the end of high school, student has no more math course choices to make but they now have

their final class rank riT+1 that shapes their terminal utility:

uT+1(riT+1;β) = βr,1riT+1 + βr,2r
2
iT+1. (2)

5.6 Rank Production and Learning

In this subsection, we delve into the process by which students form and update their beliefs about

their academic rank within their cohort. We introduce a model that captures the relationship

between a student’s GPA and their rank, while accounting for the uncertainty surrounding the

average ability of their peers. By receiving noisy signals in the form of realized GPA and rank

outcomes, students engage in Bayesian updating to refine their beliefs about the cohort’s ability

distribution. This learning process generates endogenous heterogeneity in perceived ability, even

among students with identical initial priors, highlighting the role of heterogeneous experiences in

shaping academic decisions.

Central to a student’s uncertainty about their future rank is their lack of knowledge about the

average ability of their cohort. While students understand that their rank depends on their own

GPA, they are also aware that it is influenced by the GPA distribution of their peers, which is

unobserved. To capture this relationship, we propose the following model:

rit = Φ(αggit −R−i + ηr,it) (3)

where rit represents the rank of student i in grade level t, git is their GPA before entering grade

level t, and R−i ∼ N (µ̃r, σ̃
2
r ) denotes the average ability of the cohort relative to student i. The

cohort’s ability distribution is assumed to be normal with mean µ̃r and variance σ̃2
r , both of which

are unknown to the student and the econometrician. The parameter αg captures the influence of
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the student’s GPA on their rank, while ηr,it ∼ N (0, γ2r ) is an idiosyncratic error term. The function

Φ(·) represents the cumulative distribution function (cdf) of the standard normal distribution.

But like we said before, the student does not know the true distribution (µ̃r, σ̃
2
r ). Students are

unsure about the cohort’s relative ability. We assume that students are rational and update their

beliefs in a Bayesian fashion. Students receive rank signals but before they receive any information

We assume that student has a prior belief about the cohort ability which is normally distributed

with mean zero and variance σ2
r .

In the absence of perfect information about the cohort’s ability distribution, students are as-

sumed to hold prior beliefs and update them rationally as they receive new information. Initially,

students’ prior beliefs about the cohort’s ability are normally distributed with mean zero and

variance σ2
r . Throughout their high school years, students observe their realized GPA and rank

outcomes, which serve as noisy signals about the true cohort ability. The signal received by student

i in grade level t is given by:

sr,it ≡ R−i − ηr,it = αggit − Φ−1(rit). (4)

This signal is the difference between the student’s realized GPA and the inverse of the standard

normal cdf evaluated at their realized rank. Intuitively, it captures the discrepancy between the

student’s actual rank and the rank they would expect given their GPA, providing information about

the cohort’s ability.

Students incorporate these signals into their beliefs using Bayesian updating. The updated

beliefs about the cohort’s ability distribution are characterized by the following equations:

σ2
r,t+1 =

(
1

σ2
r,t

+
1

γ2r

)−1

(5a)

µr,t+1 =

(
1

σ2
r,t

+
1

γ2r

)−1(
1

σ2
r,t

µr,it +
1

γ2r
sr,it

)
(5b)

where σ2
r,t represents the perception error variance, which decreases as the student accumulates

more information. The magnitude of the update to the mean belief, µr,t, depends on the signal’s

accuracy, with more precise signals (i.e., smaller γ2r ) leading to larger updates. Notably, when a

student’s realized rank is lower than their expected rank, their belief about the mean of the cohort’s

ability distribution shifts upward.

A key insight from this learning model is that the signals received by students, sr,it, are inher-

ently heterogeneous due to the randomness in the realized GPA and rank outcomes. As a result,

even students who start with identical prior beliefs about the cohort’s ability will develop different

perceived abilities over time. This endogenous heterogeneity in beliefs, driven by heterogeneous

experiences, offers a compelling explanation for the observed variation in course choices that goes

beyond the traditional assumption of inherent preference differences. By incorporating rank pro-
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duction and learning into our model, we capture the dynamic process by which students form and

update their beliefs about their academic standing within their cohort.

5.7 GPA Production and Learning

We now turn our attention to the evolution of a student’s GPA and the role of learning in shaping

their beliefs about their own ability. We propose a model that captures the relationship between

a student’s course decisions, past academic performance, and unobserved heterogeneity in deter-

mining their GPA. Alongside this production process, we introduce a Bayesian learning mechanism

that allows students to update their beliefs about their own ability based on the noisy signals they

receive in the form of realized GPA outcomes.

We model the evolution of a student’s GPA as a function of their course decision (ait), the highest

math course taken before the current grade level (ℓit), their GPA in the previous grade level (git),

and an idiosyncratic shock (ηit(a)). Additionally, we incorporate unobserved heterogeneity in the

form of discrete types (ki) that are known to the student but unobserved by the econometrician,

as well as a time-invariant ability component (Ai) that is unobserved to both the student and the

econometrician. Formally, the GPA production function is given by:

git+1(a, ℓit, git, ηit;α) = αa,0 + αa,ℓ(ℓit > ℓ̄t) + αa,ggit +
∑
k

αa,k(ki = k) +Ai + ηg,it(a)

= fg (a, ℓit, git, ki; θg) +Ai(a) + ηg,it(a)

(6)

where Ai(a) ∼ N (µ̃g,a, σ̃g,a) represents the time-invariant ability of student i that is unobserved to

the student and the econometrician. GPA also depends on βa,k that is the unobserved heterogeneity

for student of type k that is known to the student but not the econometrician. We assume that

the idiosyncratic shocks, ηg,it(a), are mutually independent and distributed N (0, γg(a)
2), and are

also independent from the other state variables. This specification allows for level shifts in GPA

based on course alternatives and grade level through αa,0. Through αa,g, it allows for variation in

student’s GPA at the time of entering grade level t+ 1 by their GPA at the time of entering grade

level t.

As with the cohort’s ability distribution, students do not have perfect knowledge of their own

ability Ai(a) and the associated parameters µ̃g,a(a) and σ̃g,a(a). Instead, they hold prior beliefs

about their ability, which are assumed to be normally distributed with mean zero and variance

σ2
g,a(a). As students progress through high school, they observe their realized GPA outcomes,

which serve as noisy signals about their true ability. The signal received by a type-k student i in

grade level t from course decision a is given by:

sg,it(a, k) ≡ Ai(a) + ηg,it−1(a) = git − fg (a, ℓit−1, git−1, k; θg) . (7)

This signal represents the difference between the student’s realized GPA and their expected GPA
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based on their observable characteristics and course decision. Students incorporate these signals

into their beliefs using Bayesian updating, with the updated beliefs characterized by the following

equations:

σ2
g,it+1(a) =

(
1

σ2
g(a)

+

∑t
τ=0(aiτ = a)

γ2g (a)

)−1

(8a)

µg,it+1(a, k) =

(
1

σ2
g(a)

+

∑t
τ=0(ait = a)

γ2g (a)

)−1(
1

σ2
gt(a)

µg(a) +
1

γ2g (a)

t+1∑
τ=0

sg,iτ (a, k)(aiτ = a)

)
(8b)

where σ2
g,t(a) represents the perception error variance, which decreases as the student accumulates

more signals. The magnitude of the update to the mean belief, µg,it(a, k), depends on the precision

of the signals, with more precise signals (i.e., smaller γ2g (a)) leading to larger updates. When a

student’s realized GPA is higher than their expected GPA, their belief about their own ability shifts

upward.

As with the learning process for cohort ability, the heterogeneity in the signals received by

students, sg,it(a, k), leads to endogenous differences in perceived ability across individuals, even

when they start with the same priors and make the same course decisions. This feature of the

model highlights the importance of heterogeneous experiences in shaping students’ beliefs about

their own ability, rather than relying solely on inherent preference differences to explain variation

in course choices.

The GPA production and learning mechanism, in conjunction with the rank production and

learning process described in the previous subsection, provides a comprehensive framework for un-

derstanding how students form and update their beliefs about their academic abilities and standing

within their cohort. By incorporating these learning processes into our model, we can better cap-

ture the dynamic nature of student decision-making and the role of uncertainty and information in

shaping educational outcomes.

5.8 The Optimization Problem

We now consider the dynamic optimization problem faced by students as they make their course

decisions throughout high school. We assume that students are forward-looking and choose the

sequence of courses that maximizes the expected present value of their lifetime utility, taking into

account the uncertainty surrounding their future preferences and ability signals.

Formally, the student’s objective is to choose a sequence of course decisions (ait)t=1...T that

maximizes the discounted sum of expected payoffs:

E

[
T∑
t=1

δt−1
∑
a

(ut(a, ℓit, rit;β) + ϵit(a)) 1 {ait = a}

]
(9)

where δ ∈ (0, 1) is the discount factor, ut(·) represents the flow utility derived from course decision
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a in grade level t, and ϵit(a) captures idiosyncratic preference shocks. The expectation is taken

with respect to the distribution of future preference shocks, and ability signals, conditional on the

student’s information set at each decision point.

To characterize the optimal course sequence, we introduce the ex-ante value function

Vt(ℓit, rit, k), which represents the expected discounted sum of current and future payoffs at the

beginning of grade level t, before the realization of the idiosyncratic preference shock. The con-

ditional value function vt(a, ℓit, rit, k;β), which represents the value of choosing course a in grade

level t given the state variables and the realized preference shock, can be expressed as:

vt (a, ℓit, rit, k;β) = ut (a, ℓit, rit, k;β) + δEt

[
Vt+1

(
ℓ′, r′, k

)
| ℓit, rit, ait = a

]
(10)

where Et[· | ·] denotes the expectation conditional on the student’s information set at the beginning

of grade level t, which includes the sequence of ability signals received up to period t− 1.

Assuming that the preference shocks ϵit(a) are independently and identically distributed ac-

cording to a Type 1 extreme value distribution, the conditional value function for t < T can be

written as the following weighted log-sum formula:

vt (a, ℓit, rit, k;β) =ut (a, ℓit, rit, k;β) + δE

[
ln
∑
a′

(
exp(v(a′, ℓ′, r′, k;β)

)
| ℓit, rit, ait = a, k

]
+ δΓ if t < T

(11a)

=ut (a, ℓit, rit, k;β) + δE
[
ut+1(r

′;β) | ℓit, rit, ait = a, k
]
if t = T (11b)

where Γ denotes Euler’s constant.

To estimate the model, we leverage the conditional choice probability (ccp) inversion method

proposed by Hotz and Miller (1993). By exploiting the fact that leaving school (a = 1) is a terminal

action, we can rewrite the conditional value function as:

vt (a, ℓit, rit, pit+1, k;β) =ut (a, ℓit, rit, k;β) (12a)

+δE

[
ln
∑
a′

(
exp(log pit+1(a

′, ℓ′, r′)− log pit+1(1, ℓ
′, r′)

)
| ℓit, rit, ait = a, k

]
+ δΓ if t < T

(12b)

=ut (a, ℓit, rit, k;β) + δE
[
ut+1(r

′;β) | ℓit, rit, ait = a, k
]
if t = T (12c)

The ccp inversion approach allows us to express the continuation value in terms of future choice

probabilities, which can be estimated from the data. This reformulation simplifies the dynamic

optimization problem and facilitates the estimation of the structural parameters governing students’

preferences and beliefs.

22



Table 5. Mathematical Notations

Symbol Description Main equations of reference

ait Course choice of student i in period t (1) , (6)
ℓit Math prerequisite level of student i in period t (1), (6)
rit Class rank of student i in period t (1), (3), (9)
ϵit(a) Idiosyncratic preference shock for course a (1), (9)
β Parameters in utility function (1), (9)
git GPA of student i in period t (3), (6)
R−i Average ability of cohort relative to student i (3), (4)
ηr,it Idiosyncratic error in rank production (3), (4)
αg Parameter in rank production function (3), (4)
σ2
r Variance of prior belief about cohort ability (5)

γ2
r Variance of rank signal noise (5)

µr,t Mean of posterior belief about cohort ability (5)
Ai(a) Time-invariant ability of student i for course a (6)
ηg,it(a) Idiosyncratic shock in GPA production (6)
σ2
g(a) Variance of prior belief about individual ability (8)

γ2
g(a) Variance of GPA signal noise (8)

µg,it(a) Mean of posterior belief about individual ability (8)
Vt Value function (10), (11)
vt Conditional value function (10), (11), (12)
pit Conditional choice probability (12)
qi(k) Posterior probability of being type k (22)
πk|x Type probability conditional on initial state (23)

6 Identification

This section discusses the identification of the key components of our dynamic discrete choice model,

including unobserved heterogeneity, conditional choice probabilities, conditional value functions,

flow utilities, GPA and rank production functions, and unobserved abilities. We highlight the

assumptions and variations in the data that allow us to separately identify these components and

estimate the structural parameters of interest.

6.1 Unobserved Heterogeneity

One of the primary challenges in identifying the model parameters is the presence of unobserved

student preferences that are correlated over time. To address this issue, we incorporate permanent

unobserved heterogeneity following Keane and Wolpin (1997), allowing for K distinct unobserved

types of students, each characterized by unique type-specific components that shift the intercepts

of the GPA transition and flow utility functions. The identification of the distribution of unob-

served heterogeneity relies on the dynamic choices of observationally equivalent students over time

(Arcidiacono et al., 2025). Intuitively, if some students consistently make choices that deviate from

what we would expect based on their observed characteristics and past outcomes, this suggests

the presence of unobserved factors driving their behavior. The type proportions and associated

type-specific parameters are estimated by comparing the choice probabilities and outcome distri-

butions of these students. To separately identify permanent type-specific preferences from initially

unknown unobserved abilities, we assume that the unobserved types are discrete, while the un-

observed abilities are continuous and normally distributed. The discreteness of types generates

”lumpy” variation in choices and outcomes that is distinct from the smooth variation in abilities.
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However, the unobserved types and abilities may be correlated conditional on observed outcomes.

We rely on functional form assumptions of discrete types and normally distributed abilities, as well

as the exclusion restriction that flow utilities depend only on observed rank, to disentangle their

effects.

6.2 Conditional Choice Probabilities

Conditional on the observed state variables, which include students’ observed characteristics and

past choices, the choice probabilities can be expressed as a finite mixture of type-specific conditional

choice probabilities, with mixture weights corresponding to the type proportions identified in the

previous step. Identification of type-specific conditional choice probabilities in dynamic discrete

choice models with unobserved heterogeneity requires that the observed state variables generate

sufficient variation in choices across types, such that the matrix of conditional choice probabilities is

full rank (Kasahara and Shimotsu, 2009; Hu and Shum, 2012). Intuitively, the observed variation in

choices across states must be ”rich enough” to distinguish between the different unobserved types.

6.3 Conditional Value Functions

Once the type-specific conditional choice probabilities have been identified, the conditional value

functions associated with each choice alternative can be identified using standard arguments from

the dynamic discrete choice literature (Hotz and Miller, 1993; Arcidiacono and Miller, 2011). This

requires assuming that the idiosyncratic preference shocks follow a Type 1 extreme value distri-

bution, allowing us to invert the conditional choice probabilities to obtain the conditional value

functions. The scale and location of the conditional value functions are not separately identified,

so we normalize the flow utility for one reference alternative (e.g., dropping out of school) to zero.

To simplify the computation of the conditional value functions, we follow Arcidiacono and Miller

(2011) and Arcidiacono and Miller (2019) and express the future value terms in the Bellman equa-

tion in terms of a few period-ahead conditional choice probabilities and flow utilities, rather than

solving the full dynamic programming problem. This is possible due to the linearity of the flow

utilities in the parameters and the additive separability of the preference shocks, allowing us to

write the expected maximum of the conditional value functions as a function of the logarithms of

the conditional choice probabilities (the ”log-sum formula”).

6.4 Flow Utilities

The flow utility parameters are identified from the variation in choices across students with different

observed characteristics and choice histories. The key identifying assumption is that the observed

variation in choices reflects differences in the flow utilities associated with each choice alternative,

conditional on the expected future value terms that depend on ability beliefs and the transition

probabilities of the observed states. The flow utility parameters are estimated by matching the

observed choice probabilities to the model’s predicted choice probabilities, which are functions of
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the flow utilities and the conditional value functions. To ensure identification of the scale of the flow

utilities, we normalize the flow utility of one reference alternative (e.g., dropping out) to zero and fix

the scale of the Type 1 extreme value shocks to 1. Given these normalizations, the remaining flow

utility parameters are identified from the differences in the log odds of choosing each alternative

relative to the reference alternative, for different values of the observed states.

6.5 GPA and Rank Production Functions

The parameters of the GPA and rank production functions are identified from the variation in

observed GPA and rank outcomes across students with different observed characteristics, choice

histories, and unobserved types. A key challenge is the potential for sample selection bias, as

GPA and rank outcomes for each course are only observed for students who choose to take that

course. The observed variation in outcomes may thus reflect not only the causal effects of observed

characteristics and choices on performance but also the unobserved preferences and abilities driving

course selection. To address this issue, we make two key assumptions. First, we assume that the

unobserved types are independent of the observed characteristics and past choices, conditional on

the student’s unobserved abilities. This allows us to express the expected outcome for each course

as a function of the student’s observed characteristics, past choices, unobserved abilities, and a

course-specific ”match effect” that depends on the student’s unobserved type. Second, we assume

that the unobserved abilities enter the GPA and rank production functions additively and are

independent of the other inputs, conditional on the unobserved type. This allows us to write the

expected outcomes as the sum of a type-specific component that depends on the observed inputs

and a type-specific mean ability term. Given these assumptions, the parameters of the GPA and

rank production functions can be identified from the variation in outcomes within and between

unobserved types, controlling for students’ observed characteristics and past choices. The type-

specific components are identified from the variation in outcomes across students with different

observed inputs who are predicted to belong to the same unobserved type based on their choice

histories. The mean ability terms are identified from the average differences in outcomes across

unobserved types, controlling for the observed inputs.

6.6 Unobserved Abilities

The means and variances of the unobserved ability distributions are identified from the observed

persistence in GPA and rank outcomes over time, which depends on the true values of the unob-

served abilities and the signal noise. Intuitively, if students who perform well in one period tend

to perform well in subsequent periods, this suggests that their performance is driven by persistent

unobserved abilities rather than idiosyncratic shocks. The ability variances are identified from the

degree of persistence in outcomes, with higher variances implying greater persistence, all else equal.

The parameters of the learning process are identified from the observed changes in outcomes and

choices over time as students accumulate more signals of their abilities. The speed of learning

depends on the signal-to-noise ratios of the GPA and rank signals, which are identified from the
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relative magnitudes of the ability variances and the signal noise variances. The initial ability beliefs

are identified from the variation in outcomes and choices in the first period, before any signals have

been received.

7 Estimation

In this section, we describe the estimation method for the structural model parameters. We begin

by presenting the estimation procedure without accounting for unobserved heterogeneity among

students, as this simplifies the exposition and allows for a clearer understanding of the core steps.

We then extend the estimation method to incorporate unobserved heterogeneity, which captures

important differences across students that are not directly observable in the data.

7.1 GPA and Rank Production and Learning Parameters

We use Expectation-Maximization (EM) algorithms to estimate the parameters θg, σg(a), θr and

σr. The EM algorithm for the GPA production parameters alternates between two steps until

reaching convergence:

E-step: We update the posterior ability distribution using all observed GPA data and the GPA

production parameters from the previous iteration. Equation 8 provides the Bayesian updating

formulas that update the posterior ability mean and variance. At each iteration h, we update the

population variance of the ability distribution:

(σg(a)
(h))2 =

1

N

N∑
i=1

(σg,i(a)
(h))2 + (µg,i(a)

(h))2 (13)

where N represents the sample size, µg,i(a)
(h) denotes the posterior ability mean, and σg,i(a)

(h)

denotes the posterior ability standard deviation at the start of the E-step.

M-step: Using the posterior ability distribution from the E-step, we maximize the expected

complete log-likelihood of the GPA data. Let φg,i(·) represent the pdf of the posterior ability

distribution at iteration h. We maximize:

E
(
Lg,it(a)

(h)
)
=

∫
log (Li(git+1 | a, ℓit, git, Ai(a)))φ

(h)
g,i (Ai(a))dAi(a)

=− 1

2
log(2πγg(a)

2)− 1

2γg(a)2

((
git+1 − fg(a, ℓit, git; θ

(h)
g )− µg,i(a)

(h)
)2

+ (σg,i(a)
(h))2

)
(14)

where the normality assumptions on the idiosyncratic shocks and unobserved ability lead to the

second equality. We update the parameters θg by solving:

max
θg

∑
i,t,a

(ait = a)E
(
Lg,it(a)

(h)
)

(15)
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We follow a similar two-step EM procedure to estimate the rank production parameters:

E-step: Using observed rank data and rank production parameters from the previous iteration,

we update the posterior cohort ability distribution. Equation 5 provides the Bayesian updating

formulas that update the posterior ability mean and variance. At each iteration h, we update the

population variance:

(σ(h)
r )2 =

1

N

N∑
i=1

(σ
(h)
r,i )

2 + (µ
(h)
r,i )

2 (16)

where µ
(h)
r,i and σ

(h)
r,i represent the posterior cohort ability mean and standard deviation at the start

of the E-step.

M-step: Using the posterior cohort ability distribution from the E-step, we maximize the ex-

pected complete log-likelihood of the rank data. Let φr,i(·) represent the pdf of the posterior

ability distribution at iteration h. We maximize:

In the M-step, Given the posterior ability distribution obtained at the E-step, we maximize the

expected complete log-likelihood of the rank data. Namely, at the M-step of each iteration h of the

EM estimation, denoting by φr,i(·) the pdf of the posterior ability distribution computed at the

E-step, we maximize the expected complete log-likelihood:∫ ∑
t

log (Li(rit | git, R−i))φr,i(R−i)dR−i

=− 1

2
log(2πγ2r )−

1

2γ2r

(
(Φ−1(riτ )− αggiτ + µ

(h)
r,i )

2 + (σ
(h)
r,i )

2
) (17)

We update the parameters (γr, αg) by solving:

max
γr

∑
i,τ

[
−1

2
log(2πγ2r )−

1

2γ2r

(
((Φ−1(riτ )− αggiτ − µ

(h)
r,i )

2 + (σ
(h)
r,i )

2
)]

(18)

7.2 Utility Parameters

After estimating the GPA and rank production parameters, we focus on estimating the utility

parameters θu that govern students’ course choices.

To begin, we construct an initial guess of the conditional choice probabilities (CCPs) p(1)(a |
ℓ, r) = Pr(ait = a | ℓit = ℓ, rit = r). We do this by grouping observations into bins based on discrete

math level history ℓit ∈ {0, . . . , 5} and discretized rank rit ∈ {0.01, 0.02, . . . , 0.99, 1.00}. For each

(ℓ, r) bin, we compute the empirical frequency that students in that bin choose each course a. This

gives us a non-parametric estimate of the CCPs.

Given p(h) and θ
(h)
u , we solve for θ

(h)
u by maximizing:

max
θ
(h)
u

∑
i,t,a

(ait = a)Lu,it(a)
(h) (19)

27



where

Lu,it(a)
(h) = log

 exp
(
vt

(
a, ℓit, rit, p

(h)
it+1; θ

(h)
u , θ̂g, σ̂g(a), θ̂r, σ̂r

))
∑

a exp
(
vt

(
a, ℓit, rit, p

(h)
it+1; θ

(h)
u , θ̂g, σ̂g(a), θ̂r, σ̂r

))
 (20)

Then we update p(h+1)

pit(a, ℓ, r)
(h+1) =

exp
(
vt

(
a, ℓ, r, pit+1(ℓ

′, r′)(h); θ
(h+1)
u , θ̂g, σ̂g(a), θ̂r, σ̂r

))
∑

a exp
(
vt

(
a, ℓ, r, pit+1(ℓ′, r′)(h); θ

(h+1)
u , θ̂g, σ̂g(a), θ̂r, σ̂r

)) (21)

We continue these two steps until convergence.

7.3 Estimation With Unobserved Heterogeneity

After accounting for unobserved heterogeneity, we introduce additional parameters: αk, βk, and

θk. These parameters capture the unobserved heterogeneity entering the utility, the unobserved

heterogeneity entering the GPA production, and the probability of being unobserved type k condi-

tional on the initial condition xi1, respectively. At the start of iteration (h+1), we first update the

posterior ability distributions using all observed outcomes and course choice data, the production

and learning parameters, and the Bayesian updating formulas for the posterior ability mean and

covariance. With the obtained pdf of the posterior ability distribution, we construct the type-

specific log-likelihood associated with the transition processes and the utility. We then calculate

the posterior probability of being type k as follows:

qi(k)
(h) =

π
(h)
k|xi1

exp
[∑

t,a(ait = a)E(Lg,it(a, k)
(h))
]
exp

[∑
t,a(ait = a)Lu,it(a, k)

(h)
]

∑
k π

(h)
k|xi1

exp
[∑

t,a(ait = a)E(Lg,it(a, k)(h))
]
exp

[∑
t,a(ait = a)Lu,it(a, k)(h)

] (22)

where π
(h)
k|xi1

denotes the probability of a student i being unobserved type k conditional on their

initial conditions xi1:

π
(h)
k|xi1

=
exp(xi1θ

(h)
k )∑

k exp(xi1θ
(h)
k )

. (23)

We proceed to update the parameters governing the probability of student i being type k conditional

on their initial conditions xi1:

θ
(h+1)
k = argmaxθk

∑
i,k

qi(k)
(h) log

(
πk|xi1

(θk)
)

(24)

Next, we update the population variance of the ability distribution:

(σg(a)
(h+1))2 =

1

N

∑
i

(
(σg,i(a)

(h))2 +
∑
k

qi(k)
(h)(µg,i(a, k)

(h))2

)
(25)
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where N is the sample size. We then update the parameters governing the GPA transition process:

θ(h+1)
g = argmaxθg

∑
i,k

qi(k)
(h)
∑
t,a

(ait = a)E
(
Lg,it(a, k)

(h)
)

(26)

followed by updating the parameters governing the utility:

θ(h+1)
u = argmaxθu

∑
i,k

qi(k)
(h)
∑
t,a

(ait = a)Lu,it(a, k)
(h) (27)

Finally, we update the type-specific conditional choice probabilities. We repeat these steps until

convergence is achieved. We summarize the estimation steps in 1.

Algorithm 1 Sequential E-M Algorithm

Require: Initial guesses for parameters and CCPs
Ensure: Convergence of parameters and CCPs
Initialize iteration counter h← 1
while not converged do

Construct the posterior probability of being type k using Equation (22), denoted by qi(k)
(h)

Update the parameters governing the probability of being type k θ
(h+1)
k ←

argmaxθk
∑

i,k qi(k)
(h) log

(
πk|xi1

(θk)
)

Update population variance: (σg(a)
(h))2 ← 1

N

∑N
i=1(σg,i(a)

(h))2 +
∑

k qi(k)
(h)(µg,i(a, k)

(h))2

Update the GPA production parameters θ
(h+1)
g ← argmaxθg

∑
i,k qi(k)

(h)
∑

t,a (ait = a)E
(
Lg,it(a, k)

(h)
)

Update the flow utility parameters θ
(h+1)
u ← argmaxθu

∑
qi(k)

(h)
∑

(ait = a)Lu,it(a, k)
(h)

Update the CCPs pit(a, ℓ, r, k)
(h+1) ←

exp
(
vt
(
a,ℓ,r,k,pit+1(ℓ

′,r′,k)(h);θ
(h+1)
u ,θ

(h+1)
g ,σg(a)(h+1),θ̂r,σ̂r

))
∑

a exp
(
vt
(
a,ℓ,r,k,pit+1(ℓ′,r′,k)

(h);θ
(h+1)
u ,θ

(h+1)
g ,σg(a)(h+1),θ̂r,σ̂r

))
h← h+ 1

end while=0

8 Model Estimates

In this section, we present the estimated parameters of our dynamic discrete choice model of

high school course-taking. We focus on the key components of the model, including the flow

utility parameters, rank production and learning parameters, and GPA production and learning

parameters. We also assess the model’s performance in capturing observed choice patterns using a

forward simulation approach.

8.1 Flow Utility Parameters

Table 1 reports the estimated flow utility parameters for each course option: None, Regular,

Weighted, and Accelerated. The constant term is highest for the Regular course (-0.96) and lowest

for the Weighted course (-7.15), suggesting that weighted courses may involve a higher cost of

effort for students. The Accelerated dummy variable, indicating whether a student is above the
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Table 6. Flow Utility Parameters

(1) (2) (3) (4) (5) (6) (7) (8)

None Regular Weighted Accelerated

Est. (S.E.) Est. (S.E.) Est. (S.E.) Est. (S.E.)

Constant -1.10 (0.02) -1.41 (0.02) -2.99 (0.02) -2.76 (0.03)

Accelerated 0.16 (0.02) -1.08 (0.02) 1.90 (0.02) 0.31 (0.02)

Past Rank -1.71 (0.10) 2.06 (0.09) -0.70 (0.10) -1.90 (0.11)

Past Rank squared 1.90 (0.11) -0.93 (0.10) 2.60 (0.11) 3.28 (0.12)

Black -0.16 (0.01) -0.06 (0.01) 0.08 (0.01) -0.31 (0.01)

Hispanic -0.51 (0.02) 0.08 (0.01) -0.38 (0.02) -0.45 (0.02)

Female -0.44 (0.01) 0.10 (0.01) -0.15 (0.02) -0.42 (0.02)

Note:This table presents estimated coefficients and standard errors for various student characteristics’ effects on course place-
ment across different alternatives (None, Regular, Weighted, Accelerated). The dependent variable indicates which alternative
is chosen. Coefficients are reported for variables including accelerated status, past rank, race/ethnicity, gender, and student
type. Standard errors are shown in parentheses.
Data source: Administrative data from a large urban district in Texas

recommended math level for their grade, has a positive effect on the utility of choosing Weighted

courses (0.77) but a negative effect on Regular (-1.33) and Accelerated (-0.21) courses. This sug-

gests that accelerated students may prefer weighted courses to maintain their advanced standing

while avoiding the additional challenge of accelerated courses or the repetition of regular courses.

Demographic factors also play a role in shaping students’ course preferences. Being Black

or Hispanic is negatively associated with the utility of choosing Accelerated courses, while being

female is positively associated with the utility of choosing Regular and Weighted courses. The

model accounts for unobserved student heterogeneity by incorporating two types, with Type 2

students exhibiting a significantly higher utility for Weighted courses (5.16) compared to other

options, indicating systematic differences in motivation and preferences.

The utility from taking a weighted math course increases with rank, while the utility from

taking either a regular or accelerated course decreases with rank, with coefficients of -1.16 and

-3.44, respectively. Additionally, utility is positively associated with rank squared across all course

types, with coefficients of 1.09 for the weighted course, 1.58 for the regular course, and 4.35 for the

accelerated course. This suggests that higher-ranked students derive greater utility from enrolling

in weighted courses, but less utility from regular and accelerated courses, though the positive rank

squared coefficients indicate that for all course types, utility increases more rapidly as rank moves

higher, particularly for accelerated courses.

8.2 Terminal Utility Parameters

The terminal utility parameters for final high school class rank and rank squared are 13.8 and -13.3,

respectively. Students derive more utility from achieving a higher rank, but the marginal utility

decreases as they move closer to the top of the rank distribution.
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8.3 Rank Production and Learning Parameters

The rank production function parameter estimates reveal that a one standard deviation increase

in GPA leads to a 1.78-unit increase in rank, underscoring the strong positive association between

individual achievement and relative position within the cohort. The standard deviation of the

noise in the rank production function is estimated to be 0.34, with a signal-to-noise ratio of 0.097,

suggesting that rank signals are relatively noisy and may not provide highly precise information

about a student’s true relative math ability.

8.4 GPA Production and Learning Parameters

Table 7. GPA Production and Learning Parameters

(1) (2) (3) (4) (5) (6) (7) (8)

None Regular Weighted Accelerated

Est. (S.E.) Est. (S.E.) Est. (S.E.) Est. (S.E.)

Constant -0.05 (0.01) -0.04 (0.00) -0.07 (0.01) -0.00 (0.01)

Accelerated -0.07 (0.00) 0.13 (0.01) 0.13 (0.00) 0.02 (0.01)

Past GPA 0.81 (0.00) 0.80 (0.00) 0.83 (0.00) 0.76 (0.01)

Black 0.11 (0.00) 0.13 (0.00) 0.10 (0.00) 0.12 (0.01)

Hispanic -0.04 (0.01) -0.04 (0.01) -0.09 (0.01) -0.10 (0.02)

Female 0.00 (0.01) -0.02 (0.00) -0.05 (0.01) -0.09 (0.01)

Noise S.D. 0.45 (0.00) 0.67 (0.00) 0.57 (0.00) 0.78 (0.01)

Signal-to-Noise Ratio 0.10 0.10 0.18 0.38

Note:This table presents estimated coefficients and standard errors for various student characteristics’ effects on future GPA
across different alternatives (None, Regular, Weighted, Accelerated). The dependent variable indicates future GPA. Coefficients
are reported for variables including accelerated status, past GPA, race/ethnicity, gender, and student type. Standard errors are
shown in parentheses.
Data source: Administrative data from a large urban district in Texas

Table 2 presents the estimated GPA production function parameters for each course option.

Having taken an accelerated course in the previous period has a positive effect on GPA for students

who subsequently enroll in a Weighted course (0.13) but a slightly negative effect for those who

take a Regular course (-0.04). Past GPA emerges as a strong predictor of current GPA across all

course options, with coefficients ranging from 0.75 for Accelerated to 0.83 for Weighted courses.

The estimates also reveal notable patterns across demographic groups and unobserved student

types. Hispanic and female students exhibit lower GPAs in Weighted and Accelerated courses

compared to their counterparts. Type 2 students, on average, have a higher GPA across all course

options, aligning with their higher utility from taking Weighted courses and suggesting that they

possess unobserved characteristics contributing to superior academic performance.

The standard deviation of the noise in the GPA production function varies across course options,

with the Accelerated course exhibiting the highest noise standard deviation (0.79). The signal-to-

noise ratio, measuring the informativeness of GPA signals, is highest for the Accelerated course

(0.23) and lowest for the Regular course (0.02).
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8.5 Model Fit

Table 8

(1) (2) (3)

Grade 10 Grade 11 Grade 12

Leave -0.04 -0.04 -0.02

None 0.12 -0.01 -0.07

Regular -0.03 0.07 0.07

Weighted -0.01 -0.02 0.02

Accelerated -0.03 0.00 0.00

Note: Model frequencies are constructed using 10 simulations of the structural model for each individual included in the esti-
mation.

To assess the model’s performance, we employ a forward simulation approach, generating model-

predicted choice probabilities and comparing them to actual choice probabilities in the data. The

simulation process involves drawing individual and relative ability vectors, assigning unobserved

types, generating preference shocks, and updating the state space based on the estimated structural

parameters.

Table 8 presents a comparison of the model-predicted and actual choice probabilities by grade

level and choice alternative, demonstrating that the model captures the choice patterns in the data

remarkably well across all grades and alternatives.

8.6 Ability Sorting

To better understand the patterns of ability sorting, we examine the posterior means of unobserved

individual and cohort abilities at the time of the students’ last high school enrollment. These

results, depicted in Figure 4, were obtained through the forward simulation process outlined in the

previous section.

Two key patterns emerge from Figure 4. First, students opting for weighted math courses

tend to have received strong positive signals about their individual abilities. Second, students who

remain in school but avoid rank-eligible math courses have received negative signals about their

cohort’s abilities.

Figures 4 (a) and (b) display the posterior means of individual ability for each course choice

in grades 11 and 12, respectively. Students who select weighted courses show the highest posterior

means of individual ability in both grades, with values of 0.006 in grade 11 and 0.015 in grade

12. These values indicate that these students have received positive feedback regarding their own

academic capabilities.

Figures 4 (c) and (d) show the posterior means of cohort ability for each course choice, control-

ling for individual ability. Students who stay in school but do not take a rank-eligible math course

have the lowest residualized posterior means of cohort ability, with values of -0.0006 in grade 11

and -0.001 in grade 12. This suggests that these students have received negative signals about the
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Figure 4. Ability Sorting

(a) Individual Ability, Grade 11 (b) Individual Ability, Grade 12

(c) Cohort Ability, Grade 11 (d) Cohort Ability, Grade 12

Note: This figure displays the average posterior abilities after last period of high school for different choice paths in the baseline
model. Abilities are reported in standard deviation units. These figures are constructed using 10 simulations of the base-
line model for each individual included in the estimation. Cohort abilities are plotted after residualizing over individual abilities.

abilities of their peers.

Overall, these findings indicate a clear sorting pattern based on ability. Students who receive

positive signals about their own abilities tend to enroll in weighted courses, while those receiving

negative signals about their cohort’s abilities tend to opt out of rank-eligible math courses.

9 Implications of Rank Non-Disclosure

In this section, we begin by using the structural parameter estimates and learning dynamics to ex-

amine the role of information regarding a student’s own abilities in the counterfactual scenario where

students are not informed about their rank. This analysis allows us to evaluate how the absence

of rank information influences students’ decision-making. We then complement these model-based

predictions with model-free evidence to assess the impact of rank non-disclosure on course choices,

providing additional empirical validation to our findings.
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9.1 Counterfactual Policy Simulations

Table 9. Course enrollment frequencies in baseline and counterfactual: heterogeneity by clas rank

(1) (2) (3)

Grade 10 Grade 11 Grade 12

Panel A: Below 25th percentile

Leave 0.15 0.03 0.04

None 0.01 0.04 0.05

Regular -0.03 -0.02 -0.02

Weighted -0.02 -0.04 -0.11

Accelerated 0.00 0.03 0.05

Panel B: 25th to 50th percentile

Leave 0.16 0.02 0.02

None 0.00 0.02 0.03

Regular -0.01 -0.01 0.00

Weighted -0.01 -0.03 -0.05

Accelerated -0.02 0.01 0.01

Panel C: 50th to 75th percentile

Leave 0.14 -0.01 -0.01

None -0.01 0.00 -0.02

Regular -0.01 0.00 0.00

Weighted 0.00 0.01 0.03

Accelerated -0.01 0.01 0.01

Panel D: Above 75th percentile

Leave 0.14 -0.02 -0.04

None -0.01 -0.02 -0.09

Regular -0.02 -0.02 -0.02

Weighted 0.02 0.03 0.08

Accelerated 0.03 0.04 0.04

Note: Model frequencies are constructed using 10 simulations of the structural model for each individual included in the estima-
tion. Counterfactual frequencies use 10 simulations of each counterfactual model. “No disclosure” refers to our counterfactual
where individuals have no information about their class rank.

Description: To simulate the counterfactual scenario, we consider three main sources of un-

certainty: individual preference shocks, idiosyncratic shocks in the GPA and rank functions, and

abilities. In addition, students are assumed to be unaware of their rank realization, although they

continue to know their GPA realization. The absence of rank information has two implications for

the model: (1) the student’s perceived rank enters the flow utility, and (2) without rank signals,

there is no further updating of beliefs about cohort abilities, so the belief about future rank is based

on the student’s initial prior.
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We solve the model backwards to obtain the counterfactual choice probabilities and then forward

simulate to obtain the distribution of choices and the average abilities across different choice paths.

The results of these simulations are presented in Table 9.

Analysis: Table 9 displays the changes in choice probabilities under the rank non-disclosure

policy, relative to the baseline scenario where students receive information about their rank. The

results are disaggregated by grade level (10, 11, and 12) and by the student’s initial rank percentile

(below 25th, 25th to 50th, 50th to 75th, and above 75th).

Several key patterns emerge from the counterfactual simulations. First, across all rank per-

centiles, the probability of leaving school decreases substantially in grade 10 under the rank non-

disclosure policy. This suggests that withholding rank information may encourage students to stay

in school, particularly in the early years of high school.

Second, the impact of rank non-disclosure on course choice probabilities varies by initial rank

percentile. For students below the 50th percentile (Panels A and B), the policy leads to a decrease

in the probability of choosing weighted courses, particularly in grades 11 and 12. In contrast,

for students above the 50th percentile (Panels C and D), the policy increases the probability of

choosing weighted courses, especially in grade 12.

Third, the counterfactual simulations reveal heterogeneous effects of rank non-disclosure on the

probability of choosing accelerated courses. While the policy increases the likelihood of choosing

accelerated courses for students below the 50th percentile, it has mixed effects for students above

the 50th percentile, with a decrease in grade 10 and an increase in grades 11 and 12.

These findings suggest that the impact of withholding rank information on students’ course

choices depends on their initial rank percentile. Students with lower initial ranks may be discour-

aged from taking more challenging courses in the absence of rank signals, while students with higher

initial ranks may be more inclined to enroll in weighted and accelerated courses.

The counterfactual policy simulations provide valuable insights into the potential consequences

of rank non-disclosure on students’ educational decisions. The results highlight the importance of

considering heterogeneous effects across different student subgroups when evaluating the impact of

information provision policies.

Figure 5 plots the distributions of the realized and perceived rank. Those above the median tend

to overestimate their rank when they are not informed of it explaining why AP math enrollment

increases among those above the median when a rank non-disclosure policy is implemented.

9.2 Quasi-Experimental Evidence

To complement our structural estimates, we rely on quasi-experimental evidence on the effect of

rank non-disclosure on high school course choices. The objective of this analysis is to provide

additional evidence - independent of our model’s assumptions-on how information non-disclosure

impacts high school course choices. The introduction of a rank non-disclosure in a school district

in Texas provides us an opportunity to observe course choices in schools with and without rank
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Figure 5. Distribution of Realized and Perceived Rank

Note: This figure displays the probability density distributions of realized rank (green) and perceived rank (red). The x-axis
represents the rank from 0 to 1, where 0 is the lowest rank and 1 is the highest. The y-axis shows the probability density. The
distributions largely overlap, with the perceived rank distribution showing a slight upward bias in the right-tail compared to
the realized rank distribution. This suggests that individuals tend to perceive their rank as somewhat higher than their actual
position, particularly in the right tail.

disclosure.

Description: Our analysis utilizes a comprehensive dataset encompassing 57 schools across three

independent school districts in Texas, spanning nine school years and including a total of 142,279

students. The dataset is particularly valuable due to a recent policy change that occurred in

District A, which implemented rank non-disclosure starting in year y. This policy change creates a

clear distinction between treatment and control groups: students in District A from year y onward

no longer received information about their class rank, while students in the other districts and

in District A prior to year y continued to receive rank information. The dataset provides rich

information on student demographics, course selections, GPA, and rank for each school year.

Table 10 presents summary statistics for key variables across the three districts, revealing no-

table differences in student composition and academic outcomes.

Panel A of Table 10 highlights demographic variations among the districts. District A has a

notably lower proportion of Black and Hispanic students (11% and 15% respectively) compared to

Districts B (24% and 72%) and C (24% and 67%). This demographic composition suggests that

District A serves a more predominantly white or Asian student population.

Panel B reveals distinct patterns in math course-taking behavior across the three districts.

Students in District A, on average, take more math courses (3.80) compared to those in District

B (3.15) and C (3.39). More strikingly, the average number of weighted math courses taken in

District A (1.98) is substantially higher than in Districts B (0.58) and C (0.97).

The data also show a clear trend in advanced math course completion rates. While almost

all students across all districts complete Algebra I and over 90% complete Geometry, the comple-

tion rates for higher-level math courses are consistently higher in District A. For instance, 87%

of students in District A complete Algebra II, compared to 73% and 80% in Districts B and C

respectively. The gap widens further for Pre-Calculus (63% in A vs. 27% in B and 49% in C) and
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Calculus (29% in A vs. 4% in B and 14% in C).

Panel C presents dropout rates by grade level, revealing lower attrition in District A across all

grades. By grade 10, only 6% of students in District A have dropped out, compared to 9% and 11%

in Districts B and C. This trend persists through grades 11 and 12, with District A maintaining

lower dropout rates. By grade 12, the cumulative dropout rate in District A (14%) is less than half

that of District B (33%) and substantially lower than District C (29%).

Panel D illustrates consistently higher average GPAs in District A across all grade levels. This

trend aligns with the observations from previous panels, further supporting the notion that District

A students generally perform better academically.

It’s important to note that District A is considerably smaller (8,769 students) compared to

Districts B (37,750 students) and C (95,760 students). The combination of smaller size, higher

course-taking rates in advanced math, lower dropout rates, and higher GPAs indicates that District

A is, on average, a higher-performing district.

While these differences are noteworthy and could potentially confound our analysis, we account

for these factors by including them as controls in our difference-in-differences approach to estimate

the average treatment effect of the rank non-disclosure policy.

Table 10. Past academic and background characteristics by course choice

(1) (2) (3)

District A District B District C

Panel A: Demographics

Black 0.11 0.24 0.24
Hispanic 0.15 0.72 0.67
Female 0.49 0.49 0.50

Panel B: Math Coursetaking

Total Math courses 3.80 3.15 3.39
Total Weighted Math courses 1.98 0.58 0.97
Ever Completed Algebra I 1.00 0.99 1.00
Ever Completed Geometry 0.95 0.92 0.92
Ever Completed Algebra II 0.87 0.73 0.80
Ever Completed Pre-Calculus 0.63 0.27 0.49
Ever Completed Calculus 0.29 0.04 0.14

Panel C: Dropout

Dropout by Grade 9 - - -
Dropout by Grade 10 0.06 0.09 0.11
Dropout by Grade 11 0.11 0.18 0.21
Dropout by Grade 12 0.14 0.33 0.29

Panel D: GPA

GPA after Grade 9 91.07 87.47 85.07
GPA after Grade 10 91.29 87.58 85.33
GPA after Grade 11 91.24 87.80 85.67
GPA after Grade 12 91.16 87.90 86.24

Obs 8,769 37,750 95,760

Note: This table reports summary statistics for the data that is used to estimate our structural model. This is student-level
data.
Data source: Administrative data from a large urban district in Texas

Analysis: Our study investigates the impact of a rank non-disclosure policy implemented in

District A in year y∗. We employ a difference-in-differences approach to estimate the average
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treatment effect on the treated (ATT) of this policy on students’ likelihood of enrolling in weighted

math courses. The treatment group is defined based on two key conditions: enrollment in District A

and placement below the 90th percentile. This definition accounts for the state mandate requiring

disclosure of rank information to students in the top 10th percentile, irrespective of local policies.

To capture the timing of policy exposure, we introduce the variable Postitsy = y∗ − (t − 9),

indicating whether a student entered grade level t after the policy implementation. Our analysis

utilizes the difference-in-differences approach developed by Callaway and Sant’Anna (2021), which

effectively accounts for the staggered nature of treatment exposure across academic years. This

method is particularly suitable for our context, where students were exposed to the rank non-

disclosure policy at different stages of their academic journey.

To enhance the comparability of our treatment and control groups, we impose two key sample

restrictions. First, we limit the sample to students at or above the 75th percentile. This allows us

to compare students who are similar in terms of academic performance, with those below the 90th

percentile in the treatment group and those above in the control group. Second, we restrict the

sample to students who have completed at most the recommended level of math. This addresses

the systematic differences observed in District A, which appears to be higher-performing overall.

These restrictions ensure that we are comparing similar high-performing students and controlling

for District A’s apparent higher overall performance. In our analysis, we also control for student

demographics and cluster standard errors at the school level.

Figure 6 presents event study plots for grades 10, 11, and 12, illustrating the policy’s impact on

weighted math course enrollment. For grade 10 (Figure 6 (a)), we observe two post-treatment years,

with the second cohort receiving full treatment (exposed from ninth grade). The results show a

significant positive ATT in both post-treatment years, with no substantial difference between ninth

and tenth-grade exposure. This similarity is likely because rank information is first received at

the start of tenth grade, so exposure to the policy in ninth grade does not significantly alter the

student’s information set.

The grade 11 analysis (Figure 6 (b)) displays three post-treatment years, revealing a positive

and significant ATT for all cohorts exposed to the policy. For grade 12 (Figure 6 (c)), we see four

post-treatment years, with a significant positive ATT only for the fourth cohort that received full

treatment starting from ninth grade. Interestingly, the ATT is close to zero or even negative for

cohorts with shorter exposure periods.

Across all grades, we observe that pre-treatment trends are generally stable and close to zero,

supporting the parallel trends assumption crucial for the validity of our difference-in-differences

approach. However, we note a notable exception of a positive trend three years pre-implementation

for grades 10 and 12, which warrants further investigation.

Table 11 summarizes the ATT for full treatment cohorts across grades, revealing substantial

effects. Tenth graders are 20 percentage points more likely to take weighted math when they do

not know their rank compared to when they do. The effect is even larger for eleventh graders, with

a 22 percentage point increase, while twelfth graders show a 9 percentage point increase. These
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Figure 6. Average Treatment Effects Over Time for Three Different Cohorts

Note: These graphs show the average treatment effects (ATT) over time for three different cohorts. The x-axis represents years
relative to treatment, with 0 being the year of treatment. The y-axis shows the magnitude of the treatment effect. Red bars
and points represent pre-treatment periods, while green bars and points represent post-treatment periods. The vertical bars
indicate 95% confidence intervals.
Data: Administrative data from Independent School Districts in Texas
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results suggest that the rank non-disclosure policy has a substantial positive impact on students’

propensity to enroll in weighted math courses, with the effect varying by grade level and duration

of exposure. The diminishing effect in grade 12 may indicate a ceiling effect or a shift in student

priorities as they approach graduation.

These results are consistent with the model predicts and suggest that removing potential dis-

couragement effects associated with rank disclosure may encourage students to pursue more rigorous

coursework.

Table 11. Average Treatment Effect on Weighed Math Enrollment

(1) (2) (3)

Grade 10 Grade 11 Grade 12

ATT 0.20∗∗ 0.22∗∗∗ 0.09∗∗

(0.09) (0.06) (0.04)

Mean 0.40 0.30 0.17
Obs 35,717 46,455 56,541

Note: This table reports the Average Treatment Effect (ATT) on weight math enrollment for grades 10, 11, and 12. Standard
errors are reported in parentheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1. Mean represents the average enrollment rate for each
grade.
Data source: Administrative data from Independent School Districts in Texas

10 Conclusion

This paper investigates the impact of class rank disclosure policies on high school students’ course

choices, with a focus on math course-taking. We develop and estimate a dynamic structural model of

course choice under imperfect information, incorporating Bayesian belief updating about students’

own abilities and their cohort’s average ability based on GPA and class rank signals. Our model

captures the dynamic nature of student decision-making and the role of uncertainty and information

in shaping educational outcomes.

The estimated model aligns closely with descriptive patterns in the data and reveals the signifi-

cant role of rank information in shaping students’ course choices. Counterfactual policy simulations

demonstrate that removing rank information leads to increases in advanced course-taking among

high-achieving students, consistent with reduced discouragement effects. The impact of rank non-

disclosure varies by students’ initial rank, with those above the 50th percentile being more inclined

to enroll in weighted and accelerated courses in the absence of rank information.

To validate our structural results, we conduct a quasi-experimental analysis exploiting a nat-

ural experiment in rank disclosure policies across multiple school districts. Using a generalized

difference-in-differences design, we find large positive effects of rank non-disclosure on the like-

lihood of taking advanced math courses, with the effects growing over time. The distributional

patterns of the quasi-experimental estimates align with our model’s counterfactual predictions,

providing an important external validation.

Our findings highlight the importance of considering the informational environment and its
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impact on students’ beliefs and choices when designing educational policies. The results suggest

that strategic manipulation of information provision, such as withholding rank information, can

lead to meaningful changes in course-taking behavior and potentially improved long-term outcomes

for students. Policymakers and educators should carefully consider the potential consequences of

altering the information available to students during their decision-making process.

This study contributes to the growing literature on the impact of relative performance feedback

in educational settings. We innovate by modeling multi-dimensional Bayesian belief updating

based on absolute and relative performance signals, bridging the gap between the learning and

feedback literatures. Methodologically, our use of unobserved heterogeneity in both flow utility and

transitions, estimated via a sequential EM algorithm, pushes the frontier of modeling unobserved

heterogeneity in dynamic structural models.

Future research could extend our analysis in several directions. Eliciting expectations about

future GPA and rank could provide a richer understanding of the learning process. Comparing the

outcomes for districts that have switched to different types of non-disclosure policies will provide

more robust evidence and further test the model’s predictions. Finally, linking high school course

choices to long-term educational and labor market outcomes would enable a more comprehensive

assessment of the welfare consequences of these policies.
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